Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation

نویسندگان

  • Daniele Merico
  • Ruth Isserlin
  • Oliver Stueker
  • Andrew Emili
  • Gary D. Bader
چکیده

BACKGROUND Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal. PRINCIPAL FINDINGS To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed "Enrichment Map", a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results. CONCLUSIONS Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/EnrichmentMap/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constellation Map: Downstream visualization and interpretation of gene set enrichment results

UNLABELLED Gene set enrichment analysis (GSEA) approaches are widely used to identify coordinately regulated genes associated with phenotypes of interest. Here, we present Constellation Map, a tool to visualize and interpret the results when enrichment analyses yield a long list of significantly enriched gene sets. Constellation Map identifies commonalities that explain the enrichment of multip...

متن کامل

Constellation Map: Downstream visualization and interpretation

Gene set enrichment analysis (GSEA) approaches are widely used Summary: to identify coordinately regulated genes associated with phenotypes of interest. Here, we present Constellation Map, a tool to visualize and interpret the results when enrichment analyses yield a long list of significantly enriched gene sets. Constellation Map identifies commonalities that explain the enrichment of multiple...

متن کامل

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013

Functional enrichment analysis is an essential task for the interpretation of gene lists derived from large-scale genetic, transcriptomic and proteomic studies. WebGestalt (WEB-based GEne SeT AnaLysis Toolkit) has become one of the popular software tools in this field since its publication in 2005. For the last 7 years, WebGestalt data holdings have grown substantially to satisfy the requiremen...

متن کامل

From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems

MOTIVATION Current gene set enrichment approaches do not take interactions and associations between set members into account. Mutual activation and inhibition causing positive and negative correlation among set members are thus neglected. As a consequence, inconsistent regulations and contextless expression changes are reported and, thus, the biological interpretation of the result is impeded. ...

متن کامل

WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit

Functional enrichment analysis has played a key role in the biological interpretation of high-throughput omics data. As a long-standing and widely used web application for functional enrichment analysis, WebGestalt has been constantly updated to satisfy the needs of biologists from different research areas. WebGestalt 2017 supports 12 organisms, 324 gene identifiers from various databases and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010